
1 

 

THE CHALLENGE OF GENERAL MACHINE VISION1 

Theo Pavlidis  

Computer Science Dept. 

Stony Brook University 

Stony Brook, NY 11794, U.S.A. 

1. Introduction 

The last two decades have seen several successful applications of Machine Vision 

and that has raised hopes that we may be able to solve the general Machine Vision 

problem in the near future. In my opinion this is not likely to happen. There are 

three types of difficulties that impede progress in general machine vision that I will 

address in this paper. 

• The complexity of human vision: Bottom-up and top-down processes are 

tightly interwoven and we have no good models for dealing with that. 

• The fact that perceptual similarity is not the same as mathematical similarity. 

• The illusion of progress by relying on “proofs by example” that are not 

always valid. 

Successful applications have been made possible by removing such difficulties 

because of the special nature of each particular problem and I will list several such 

examples. The lists are by no means complete. Listing all successful machine vision 

applications is well beyond the scope of the paper. However, all applications I am 

aware of are problem specific. 

Note: The paper is accompanied by an Appendix 

(http://theopavlidis.com/MachineVision/Appendix.pdf  ) that contains all color 

illustrations. 

2. The Complexity of Human Vision 

I believe that machine vision researchers have grossly underestimated the difficulty 

of the general problem ignoring the evidence from Psychobiology and Neuroscience. 

More than 20 years ago Bela Julesz wrote “In real-life situations, bottom-up and 

top-down processes are interwoven in intricate ways," and "progress in 

psychobiology is ... hampered ... by our inability to find the proper levels of 

complexity for describing mental phenomena” [1]. V.S. Ramachandran wrote 

“Perceptions emerge as a result of reverberations of signals between different levels 

of the sensory hierarchy, indeed across different senses” and criticized the view 

that “sensory processing involves a one-way cascade of information (processing)” 

[2]. 

                                       
1 To appear in the January 2014 issue of the journal of Signal, Image and Video Processing. 
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For simplicity, I will use examples with text to illustrate the complexity of human 

vision. Look at these two sentences

New York State lacks proper facilities for the mentally III. 

The New York Jets won Superbowl III
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Figure 2: Left: Letter recognition overrides stroke detection.
recognition overrides letter recognition.
 

 
Figure 3: A simplified block diagram characteristic of applications of computer 
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Successful applications of machine vision are characterized by having sufficient 

prior knowledge to guide feature extraction as well as the final decision (Figure 3).  

One example is Image-Guided Surgery developed at M.I.T. and the Brigham and 

Women’s Hospital at Boston [4]. A key part of the process is segmenting the tumor 

from healthy tissue in MRI images. However the MRI machines used do not have 

uniform gain across the image and that complicates the segmentation. Still the 

problem is physically well defined. We know that the image to be analyzed is an 

MRI brain scan and we understand the various types of distortion present. The 

application of machine vision methods has enabled surgeons to operate on tumors 

that used to be characterized as inoperable because of their proximity to vital areas 

of the brain. 

Another example is the wildfire detection system developed at Bilkent University of 

Ankara, Turkey [5]. Fire wardens often miss early signs of a wildfire and issue an 

alarm only after the fire has spread. The imaging system relies on the spectral 

characteristics of smoke and the complicating factor is the presence of clouds. 

Again the problem is physically well defined. According to Prof. Enis Cetin, it was 

politically impossible to eliminate fire wardens so the system was fine tuned to 

never miss a fire at the expense of some false alarms that would be reset by the 

wardens. False alarms are caused typically by overcast skies and the system uses a 

learning algorithm to reduce such incidence. It has been deployed in 77 locations in 

Turkey and 2 in the U.S. and during 2007-2012 detected 241 wildfires [Personal 

communication]. 

There are numerous other examples involving relatively simple imaging challenges 

such as the system identifying and measuring bright spots in micro-arrays in high 

throughput biology [6, 7]. 

I conclude this section from a quote by John Tsotsos that summarizes nicely the 

prospects for general Machine Vision: 

“Vision as we know it seems to involve a general purpose processor that can be 

dynamically tuned to the task and input at hand. This general purpose processor 

can solve a class of visual perception problems (the class of 'at a glance' problems) 

very quickly but for more difficult problems time is the major cost factor, that is, 

those problems take longer to solve using that same general processor but tuned 

for specific sub-problems that together solve the remaining, 'more than a glance',  

problems.” ([8], p 248) 

3. Perceptual similarity is not the same as mathematical similarity 

Figure 4 shows an old example. The shape on the right is elliptical, thus pixel by 

pixel comparison produces a greater distance from the other two than the others 



 

have from each other. On the other hand human observers point to the middle 

shape as being the one not belonging with the others. One could “fix” this example 

by using other measures than pixel location differences but then one can construct 

other examples where the new measures do not provide results in agreement with 

human perception. 

 
Figure 4: Which one of the three shapes does not belong with the other two?
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A more recent development is iris recognition [12, 13] for which there have been 

commercial applications, including the system developed by IrisGuard [14]. 

According to Imad Malhas, CEO of IrisGuard, one of the customers of the company 

is the Cairo-Amman Bank that uses iris recognition for customer identification at its 

ATMs dispensing with the need for cards and PINs. [Personal communication] 

Fingerprints and iris scans are called hard biometrics because the system deals with 

images of a very specific kind, therefore facilitating the analysis in terms of the 

issues discussed in the previous section. A more challenging application is soft 

biometrics such as scars and tattoos because the system must deal with a broader 

category of images. However, the matching process still relies on finding nearly 

identical images and a successful system for soft biometrics has been developed at 

Michigan State University [15]. 

Another area where computer vision has made significant progress is industrial 

inspection because we are trying to closely match an image to a prototype. One 

example is a wheel alignment system [16] as well as several products of Microscan 

[17]. 

 

4. “Proof” By Example 

It has been an old tradition in machine vision to demonstrate the effectiveness of a 

method by showing its results on a set of examples. Validation by experimentation 

is accepted in many fields of science provided that the experimental results are 

repeatable. Unfortunately, the description of methodologies in machine vision is 

rarely sufficient to allow attempts to repeat the results.  Vandewalle et al [18] 

discuss this problem in the context of general signal processing and offer 

suggestions to remedy the situation. 

There are additional problems with the current practice. Torralba and Efros [19] 

have shown that the datasets used for validation of machine vision methods have 

inherent biases that undermine the repeatability of the results. There is an old 

apocryphal story (dating from the 1970’s) that a company developed a system to 

recognize the presence of a tank in an image. It turned out that all pictures with a 

tank present had been taken in bright day light and all pictures without a tank had 

been taken in the evening (it may have been the other way around). So all the 

system was doing was detecting brighter from dimmer images. This is an extreme 

example of fortuitous recognition that illustrates the need for careful selection of 

the images in a testing dataset. 

But there is an even bigger challenge. Experimental proofs are particularly hard in 

machine vision because the number of possible images is truly astronomical. I have 
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shown [20] that 1056 is a very conservative lower bound to the number of all 

possible meaningful and valid images and that number could be as high as 10400. 

(The ambiguity in the limit is because it is hard to test objectively whether two 

images can be differentiated by a human observer. See [20] for more on this 

issue.) Testing a method on a set of only a few thousands images tells us nothing 

about its general validity. 

It is possible to expand a given set of images by generating additional images from 

it by transformations that do not change the semantics and obtain more reliable 

statistical results.  A few years ago I worked on a method for Image Retrieval 

(CBIR). The method did quite well on a set of about 5,000 images. I expanded that 

set by a factor of about 100 by generating new images from the originals by 

simulating over- and under-exposure, shadows, and other visual artifacts. The 

method did very poorly on the set of 500,000 images. Figure 7 (Appendix: 

http://theopavlidis.com/MachineVision/Appendix.pdf  ) provides an illustration of 

the results. For details see [21]. 

An area of Machine Vision that has relied on large volumes of data, including 

artificially generated images, is Optical Character Recognition (OCR). Today OCR 

packages come bundled with scanners and perform quite well on printed documents 

in English using standard fonts. Therefore the OCR problem can be considered as 

solved for such documents. It still remains open for other languages and even 

English when printed with uncommon fonts. Recognition of the text in whole books 

is a topic of active research [22, 23]. It is worth pointing out that the authors of 

[23] used a set of about two million words (11 million characters) to design their 

system and an even bigger set (6 million words) to test it. The design of bar code 

readers that are expected to have a misread rate better than one in a million scans 

(while maintaining a rejection rate under 1%) relies on artificially generated data 

based on physical models of the distortions and noise that might be encountered. 

A recent publication from Google [24] has used a data set of ten million 200x200 

images. The authors claim that they were able to extract features from unlabeled 

data and obtained 15.8% accuracy in recognizing 22,000 object categories. The 

recognition rate is clearly much better than a random guess, but it is well below 

what I would expect from a practical recognition system. 

 

5. A Final Note 

I conclude with an example of an industrial system where I had direct personal 

involvement while I was working at Symbol Technologies. The objective was to 

measure the dimensions of a rectangular shipping box from one image. Because of 

the constraints on the shape of the object it is possible to estimate the relative 
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dimensions from one view. If we know the actual distance of the object from the 

camera we can find the actual dimensions. (This was measured by the parallax of 

two laser beams.) A major challenge is that because of labels and other markings 

on a box the contrast between the box and its surrounding is lower that the 

contrast within the box. On the other hand we can safely assume that the box 

occupies most of the image because the scanning device is handheld and aimed at 

the box. Therefore we developed a method to detect only long linear edges and 

determine the outline of the box as the convex hull of such lines. If the convex hull 

is a hexagon the system signals success. The actual method is a bit more 

complicated and it is described in detail elsewhere [25, 26]. I should add that there 

was no training data set because of the unpredictability of the challenges that 

potential customers would provide. Instead all parameters were set adaptively for 

each image and the design of the algorithm relied on physical modeling. The 

resulting device performed well in field tests and some shipping companies 

expressed interest for using it in their shipping hubs. Symbol Technologies had 

hoped that it would be used by each driver, a much bigger potential market. The 

hub market was not big enough to justify production of the device. 
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